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CONSPECTUS: Until recently, it had been impossible to
predict structures of molecular crystals just from the knowledge
of the chemical formula for the constituent molecule(s). A
solution of this problem has been achieved using intermolecular
force fields computed from first principles. These fields were
developed by calculating interaction energies of molecular dimers
and trimers using an ab initio method called symmetry-adapted
perturbation theory (SAPT) based on density-functional theory
(DFT) description of monomers [SAPT(DFT)]. For clusters
containing up to a dozen or so atoms, interaction energies
computed using SAPT(DFT) are comparable in accuracy to the
results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude
larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the
supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and
possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic
functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing,
lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal
structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within
about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of
several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles
approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can
only be extrapolated to such cases.
As an alternative to applying SAPT(DFT) in crystal structure calculations, one can use supermolecular DFT interaction energies
combined with scaled dispersion energies computed from simple atom−atom functions, that is, use the so-called DFT+D approach.
Whereas the standard DFT methods fail for intermolecular interactions, DFT+D performs reasonably well since the dispersion
correction is used not only to provide the missing dispersion contribution but also to fix other deficiencies of DFT. The latter
cancellation of errors is unphysical and can be avoided by applying the so-called dispersionless density functional, dlDF. In this case,
the dispersion energies are added without any scaling. The dlDF+D method is also one of the best performing DFT+D methods.
The SAPT(DFT)-based approach has been applied so far only to crystals with rigid monomers. It can be extended to partly flexible
monomers, that is, to monomers with only a few internal coordinates allowed to vary. However, the costs will increase relative to rigid
monomer cases since the number of grid points increases exponentially with the number of dimensions. One way around this
problem is to construct force fields with approximate couplings between inter- and intramonomer degrees of freedom. Another way is
to calculate interaction energies (and possibly forces) “on the fly”, i.e., in each step of lattice energy minimization procedure. Such an
approach would be prohibitively expensive if it replaced analytic force fields at all stages of the crystal predictions procedure, but it can
be used to optimize a few dozen candidate structures determined by other methods.

1. INTRODUCTION
Predictions and microscopic-level understanding of properties of
molecular crystals is critical for many branches of science and
technology. The key element for achievement of these goals is
the knowledge of the forces between molecules (monomers),
which are the building blocks of such materials. These forces can
be either obtained by fitting measured properties of crystals,
resulting in the so-called empirical force fields or obtained by
solving equations of quantum mechanics, resulting in ab initio
force fields. With the latter fields, one potentially may predict
crystal structures and properties fully from first principles, that is,
without utilizing any experimental data. Thus, this method is of

particular interest in crystal engineering, which aims at creating
new types of crystals.
For a long time, theory was unable to predict crystal structures

from structural chemical formulas of monomers. This was
considered to be a serious failure, and in 1988 Maddox1 wrote
“One of the continuing scandals in the physical sciences is that it
remains in general impossible to predict the structure of even the
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simplest crystalline solids from a knowledge of their chemical
composition”. Fourteen years later, Desiraju2 concluded that
“A method for predicting crystal structures from just molecular
formulae has eluded scientists for more than 50 years”. As will be
discussed later on, these authors did not appreciate how sensitive
crystal structures are to details of the intermolecular force fields,
that is, to the intermolecular interactions between monomers
building a crystal. In the 1980s, reliable ab initio calculations of
intermolecular interaction energies near van der Waals minima
were virtually impossible: in a 1988 review, Buckingham, Fowler,
and Hutson3 referred to this part of an intermolecular potential
using the phrase “theoretically intractable ‘intermediate region’”.
Thus, the only option then was to use empirical potentials,
which, as we know now, are insufficiently accurate for pre-
dicting crystal structures. The problems of such methods were
exposed by a series of “blind tests” organized by the Cambridge
Crystallographic Data Centre (CCDC): for the first time in
1999,4 followed by four more tests, the last one published
in 2011.5

Reliable ab initio calculations of intermolecular potentials for
few-atom dimers became possible in the 1990s, for example, see
refs 6−8, and currently such potentials can be computed for
dimers containing close to 100 atoms. This progress has been
made possible partly by increases of computer power, by about
8 orders of magnitude between the 1980s and the present time,
but to a larger extent by the development of new computational
methods. The latter progress has been more critical for the field
of intermolecular interactions since interactions energies include
large contributions from electron correlation effects, that is,
from the solutions of Schrödingers’s equation that go beyond
the independent-particle Hartree−Fock (HF) approximation.
Older methods for calculating correlation effects, such as the
configuration interaction (CI) method, scale as N! with system
size N (expressed as the number of electrons). Such methods
were applicable in the 1980s only to diatomic few-electron
dimers.9 The 8 orders of magnitude increase in computer power
would have extended applicability of such methods to systems
with only a dozen or so electrons. More significant progress was
achieved by the development of the many-body perturbation
methods based on the Møller−Plesset partition of the
Hamiltonian (called MP methods), of coupled-cluster (CC)
approaches,10 and of symmetry-adapted perturbation theory
(SAPT).11−13 These methods scale as powers ofN, and methods
with N7 scaling have to be used to obtain reliable interaction
energies. This growth is much slower than N!, and therefore
calculations of interaction energies for systems with hundreds of
electrons are now possible. An even better scaling,N4, is achieved
by density-functional theory (DFT) in the Kohn−Sham (KS)
implementation.14 Although standard versions of DFT fail badly
for intermolecular interactions,15,16 DFT can be used within
SAPT formalism17,18 to obtain accurate interaction energies
at low costs. This method, dubbed SAPT(DFT), can be used
to compute interaction energies for dimers with hundreds of
atoms,19 that is, for systems for which the costs ofN7 calculations
would be prohibitive.
Ab initio-derived potentials have two main advantages over

empirical ones: (a) uniform and potentially arbitrarily high
accuracy in all regions, whereas empirical force fields fitted
to crystal data are not sensitive to configurations beyond
nearest-neighbor arrangements; (b) applicability to notional
(i.e., hypothetical) crystals for which no experimental data
exist, whereas empirical potentials have to be extrapolated to
such cases.

Results computed by ab initio electronic structure methods are
independent of whether experimental values of these properties
are known. Empirical approaches fit parameters to reproduce
some experimental results, so these methods model rather than
predict these properties. Furthermore, whereas the literal
meaning of “ab initio” is just “from first principles”, we will use
the former term for electronic structure calculations and the
latter one for work involving also crystal packing, minimization,
and molecular dynamics (MD) simulations. The DFT
approaches will be included in the ab initio category, although
some variants of DFT are fitted to experimental data and are
therefore semiempirical.
This Account will discuss first-principle methods of crystal

structure determination. It will concentrate on construction of
force fields, while other steps of the process, i.e., methods of
crystal packing, lattice optimizations, and MD simulations will
be described only briefly. Discussions of the latter steps can be
found in the CCDC blind test papers and, for example, in refs
20−23. In section 2, the basic concepts of the SAPT approach
to investigations of intermolecular forces will be described.
Section 3 will present various DFT-based methods adapted
to calculations of interaction energies, including SAPT(DFT).
In section 4, the methodology of crystal-structure determination
will be outlined and results of some investigations presented.
Section 5 will discuss perspectives of extending first-principle
methods to crystals with flexible monomers. Section 6 contains
a summary.

2. SYMMETRY-ADAPTED PERTURBATION THEORY

The simplest way to obtain interaction energies is by subtracting
from the total energies of the whole cluster the total energies of
the constituent monomers. Any electronic structure method can
be used, but reliable calculations of interaction energies require
a high-level description of electron correlation effects. This
scheme is called the supermolecular approach to intermolecular
interactions. In contrast, SAPT is a perturbation theory starting
from isolated monomers and computing interaction energies
directly, without computations of the total cluster energies.13,24,25

The total Hamiltonian, H, for a dimer consisting of monomers
A and B is decomposed into the unperturbed Hamiltonian, H0,
which is the sum of the monomer Hamiltonians, H0 = HA + HB,
and the perturbation operator V containing all Coulomb
interactions of particles of monomer A with those of B. One
first solves Schrödingers’s equations for monomers and then uses
perturbation theory to calculate contributions to interaction
energies as an expansion in powers of V

= + +E E E ...int
(1) (2)

The simplest, Rayleigh−Schrödinger (RS) perturbation
expansion can be applied, but it gives unphysical interaction
energies at small intermonomer separations. This is because the
RS wave functions are not fully antisymmetric with respect to
electron exchanges (in other words, the Pauli exclusion principle
is violated). The symmetry adaptation utilized in SAPT fixes this
problem by properly projecting the wave functions to make them
fully antisymmetric.
SAPT provides the standard way of understanding inter-

molecular interactions in terms of the fundamental physical
components: the electrostatic, induction (polarization plus charge
transfer), dispersion, and exchange (valence repulsion) contribu-
tions. These contributions are not only computed by SAPT
in a quantitative way but seamlessly connected to the same
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components in the multipole expansion of interaction energies
at large intermonomer separations R. Figure 1 shows the
decomposition of the interaction energy for the cyclotrimethylene
trinitramine (RDX) dimer.26 The configuration chosen is that of
the nearest neighbors in the RDX crystal.
Exact solutions of Schrödinger’s equations for the monomers,

the starting points for SAPT expansions, are possible only for
small atoms such as helium28 or lithium.29 For larger systems,
one has to further decompose the monomers’ Hamiltonians
into Fock operators, FX, and MP potentials, WX. Thus, SAPT
becomes a triple perturbation theory with respect to the
operators V, WA, and WB.

11−13 If all the corrections available in
the SAPT codes are included, accuracy of SAPT interaction
energies is comparable to that of the CC method with single,
double, and noniterative triple excitations, CCSD(T). A
comparison of these two methods is shown in Figure 2 on the
example of the helium dimer, the only dimer for which virtually
exact interaction energies are known. As one can see, SAPT
performs on this system overall slightly better than CCSD(T),
but differences are very small. Several computer packages can be
used to perform SAPT calculations.31−34

3. DENSITY FUNCTIONAL CALCULATIONS OF
INTERACTION ENERGIES

Since DFT scales much better than wave function-based methods
for computing electron correlation effects, it should be in
principle the method of choice for calculations of interaction
energies for large systems. Unfortunately, as already mentioned,
the standard DFT methods are unsuitable for this task. In
particular, these methods fail badly for systems with large
dispersion interactions, such as the argon dimer. The perform-
ance of various DFTmethods for this dimer is shown in Figure 3.

Clearly, none of the methods comes even close to the exact
results. This failure of DFT is generally attributed to its inability
to recover dispersion energies, which result from interactions
between electrons separated by distances of several angstroms,
whereas standard DFT models such interactions only for
separations of the order of 1 Å. However, this is not the only
problem of DFT methods, as clearly seen in Figure 3. If it were,

Figure 1. SAPT components for the RDX dimer.26 The curve denoted
as SRT is the empirical potential of Sorescu et al.27 Adapted with
permission from ref 26. Copyright 2007 by Royal Society of Chemistry.

Figure 2. Comparison of performance of SAPT and CCSD(T) methods for the helium dimer.30 All the results were extrapolated to the complete basis
set limit. The “exact” potential energy curve is accurate to better than its width.

Figure 3. Comparison of performance of various DFT methods on the
argon dimer. The benchmark curve35 is accurate to about its line width.
The acronyms define various DFT methods, for example, see, ref 36.
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all the methods would had given wrong but similar interaction
energies, which is not the case. The other problem is that the
electron densities given by DFT methods decay too slowly for
large distances from nuclei.37,38

3.1. SAPT(DFT)

There are three main methods of making DFT usable for
intermolecular interactions. The earliest solution was SAPT-
(DFT).17,18,39−44 This method overcomes both the dispersion
and asymptotic problems of DFT by utilizing it only for
calculations on monomers while computing all components of
interaction energies from SAPT expressions. The simplest
version of such approach39 is to utilize the isomorphism of HF
and KS one-electron solutions and replace HF orbitals and
orbital energies by KS ones in the SAPT formulas that neglect
operators WA andWB. Such a simplistic approach works poorly,
but if the KS densities are asymptotically corrected40,41 and the
dispersion energies are computed at the coupled KS (CKS)
instead of uncoupled KS level,42,43 the accuracy of SAPT(DFT)
interaction energies is comparable to that of the regular SAPT.
The advantage of using SAPT(DFT) rather than the regular
SAPT is that the former method scales as N5 (N4 if some small
terms are neglected), whereas the regular SAPT at the level of
intramonomer electron correlation high enough to be com-
petitive to the CCSD(T) method scales as N7 [same scaling as
that of CCSD(T)]. The reason for the speedup is that the most
time-consuming corrections in regular SAPT, accounting for the
intramonomer electron correlation effects, are not needed in
SAPT(DFT).
The scalings of costs mentioned above assume the use of

density-fitting techniques.18,45,46 The efficiency of density-
fitted SAPT(DFT) significantly improved in recent years.

Figure 4 shows the timings of the original codes45,46 compared
with the current version in the SAPT2012 package.31 The main
speedup was actually achieved by interfacing SAPT(DFT) with
a more efficient front-end package, but other speedups are also
significant. With current timings and with availability of a few
hundred computer cores, one can perform all runs needed to
develop an RDX dimer potential similar to that of ref 26 in about
a day. This means in practice that the range of applicability
of SAPT(DFT) to molecular crystals has been extended from
monomers containing about 20 atoms to monomers with about
40 atoms. At the present, the majority of effort needed to develop
the potential is actually the human effort at the stage of fitting
the computed interaction energies. However, an automatic
program performing such fitting is now under development in
our group. Figure 4 shows that if a nonhybrid functional is used,
SAPT(DFT) calculations are equally costly as supermolecular
DFT calculations. At the same time, the latter calculations give
nonsensical interaction energies (−1.25 and −1.54 kcal/mol
using PBE and PBE0, respectively), whereas the former ones give
−8.00 kcal/mol using PBE0, the minimum value in Figure 1, and
−7.94 kcal/mol using PBE.
3.2. Functionals Optimized on Intermolecular Interactions

One possible approach to improve the performance of DFT
methods on interaction energies is to optimize parameters in
the functionals to better reproduce these energies.49,50 However,
one should note that the form of the functionals remains the
same so that these functionals still cannot recover dispersion
energies for the reasons mentioned earlier. This fact is visible
at intermolecular separations larger than about two times the
minimum distance where DFT methods of this type perform
poorly.51 In particular, for systems dominated by dispersion

Figure 4. Density-fitted SAPT(DFT) wall times (on a single core of a 2.2 GHz Opteron processor) for calculations on the 42-atom RDX dimer. The
aug-cc-pVDZ plus 3s3p2d2f midbond basis set in the monomer-centered “plus” (MC+) form47 and the pure and hybrid versions of the PBE functional48

were used. The set of SAPT(DFT) corrections was identical as in ref 26. Bars marked as 2008 were computed with the SAPT2008 codes and Dalton 2.0
front-end, whereas the current calculations used Orca 3.0.1 front-end. The unexpectedly shorter PBE0 time compared with PBE is due to smaller
number of iterations in the former case. The “DFT” bars are supermolecular counterpoise-corrected DFT calculations.
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forces, the interaction energies do not decay as the sixth inverse
power of R.
3.3. DFT Supplemented by Dispersion Energies

Another solution to the problems of DFT in calculations of
intermolecular forces is to supplement DFT interaction energies
with scaled dispersion energies, most often computed from
simple atom−atom functions analogous to those used in
empirical biomolecular force fields, leading to the so-called
DFT+D approaches.52−56 Separation-dependent scaling is
needed since, as seen in Figure 3, the DFT interaction energy
for each density functional needs to be corrected by a different
amount. Thus, the dispersion energy term is used not only to add
this missing component, which is physically reasonable, but also
to remove the asymptotic density errors, which cannot be justified
on physical grounds.
To eliminate the necessity of using scaled dispersion energies

to correct errors of DFT methods unrelated to dispersion inter-
actions, Pernal et al.51 proposed a version of DFT+D including
a novel “dispersionless” density functional, denoted as the
dlDF+D method. This functional was optimized to reproduce
dispersionless interaction energies, that is, interaction energies
from which the dispersion and exchange-dispersion energies
(computed using SAPT) were subtracted. Since standard density
functionals are capable of describing all interactions contained in
dispersionless interaction energies, this approach has a solid
physical foundation. The dispersion energies can then be added
to the dlDF interaction energies without any scaling. The
dlDF+D method is not only better justified than other
DFT+D variants, it also is one of the most accurate ones.57

This performance is shown in Figure 5. The bars show errors on
dimers dominated by dispersion forces (NBC10), on hydrogen-
bonded dimers (HBC6), and the overall error. As one can see,
the dlDF+D approach gives the smallest overall error, although
this error is only slightly smaller than in the case of B3LYP+D3
method. dlDF+D performs better on hydrogen-bonded systems,

but B3LYP+D3 performs better on the NBC10 set. The reason
for the latter is that 9 out of the 10 NBC10 dimers contain
monomers with aromatic rings and no such systems were used
in training of the dlDF method.
One challenge in the DFT+D approach is to replace the

simple atom−atom asymptotic dispersion functions by ab initio
dispersion energies, which are sufficiently inexpensive for applica-
tions to very large systems. For monomers with more than a few
atoms, one has to use distributed asymptotic expansions, that is,
expansions containing inverse powers of interatomic distances
rather than inverse powers of the distance between centers of
mass of monomers. A new distribution method was recently
developed in refs 60 and 61. The charge-overlap effects can
then be included using the localized-overlap dispersion energy
algorithm,62 which speeds up calculations of dispersion energies
for large molecules by 2 orders of magnitude compared with the
best standard SAPT(DFT) algorithm.

4. DETERMINATION OF CRYSTAL STRUCTURES

The process of crystal structure determination consists of several
steps, listed in Figure 6. Assuming that the monomers are given
only by their structural chemical formula, one has to start from
an optimization of monomer (gas-phase) geometry. Of course,
in a crystalline environment, the monomers will always deform,
but for a large class of crystals, these deformations are so small
that their effect on the interaction potential can be neglected.
The next step is to choose a set of grid points and perform

SAPT(DFT) calculations for all these points. The grid points
have usually been selected based on physical intuition, but a new
method under development in our group uses a guided Monte
Carlo algorithm. The computed interaction energies are then
fitted by an analytic function. For rigidmonomers, such functions
usually are sums of isotropic pair potentials between the atoms
of monomer A and those of monomer B and include Coulomb
interactions of partial charges, exponential terms modeling

Figure 5. Comparison of performance of various DFT methods on R-dependent benchmarks from refs 58 and 59. The dlDF+D results are from ref 57.
See ref 57 for acronyms defining various DFT methods.
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exchange repulsion, and terms proportional to the sixth and
higher inverse powers of interatomic distances. Often an explicit
polarization term containing induced dipoles is also included,
which does not improve appreciably two-body fits but provides
an approximate account of pairwise nonadditive many-body
effects. The fit can be made more accurate by using off-atomic
sites in addition to the atomic ones. The quality of the potential
fit is validated by checking its accuracy relative to ab initio values
on a number of points not used in fitting. If the accuracy of
reproducing these points is too low, additional ab initio points
are computed and the fit is repeated. Typically, for systems of
the size of the RDX dimer, one can obtain fits that are accurate
to a fraction of a kilocalorie per mole for negative interaction
energies. This accuracy is commensurate with the accuracy of
SAPT(DFT) calculations and significantly higher than can be
achieved with any other method for systems of this size. The
total force field of the crystal is constructed as a sum of pair
interactions. One can also compute ab initio three-body effects
beyond the polarization model.63−65

The force field can now be applied in a search of the minimum-
energy crystal structure. The first step of such search, called
molecular packing, can even be performed without using any
potentials but just by representing monomers as a set of hard
spheres with radii equal to the van der Waals radii of atoms.
All the commonly observed space symmetry groups and a large

number of monomer arrangements in the crystal cell of each
group are considered. The crystal is first built with large
intermonomer separations and then contracted until some
spheres touch. The density of the crystal is then computed. This
procedure is performed for several hundred thousand initial
configurations and a few hundred configurations with highest
densities are selected for further processing. The next step is a
minimization of the lattice energy (usually within the space
symmetry group constrains) using the SAPT(DFT) force field
starting from each of the structures selected in the previous step.
The final step of the procedure is MD calculations for a dozen or
so lowest-energy crystals. Almost all published determinations of
crystal structures were based on internal energies, whereas
ordering of crystal structures is determined by more difficult to
compute free energies. Several methods are available for
calculations of the latter energies, for example, the metadynamics
approach66 or temperature-accelerated sampling,67 the latter one
recently applied to crystal polymorphism problems.68

The first crystal-structure determinations using the method
described above were published for the RDX crystal in 2008.65

While these were not blind predictions, first-principle
approaches give the same result irrespective whether they
are blind or not, as mentioned in the Introduction. A similar
SAPT(DFT)-based method was developed by Misquitta et al.69

and successfully used in blind predictions of the crystal struc-
ture of C6Br2ClFH2. Around the same time, Neumann et al.70

successfully applied a method based on empirical force fields
and DFT+D. Later, SAPT(DFT)-based calculations were per-
formed by Taylor et al.71 for the 1,1-diamino-2,2-dinitroethylene
(FOX-7) crystal. This work was oriented at thermal properties of
the crystal, so no search of the minimum structure was per-
formed, and MD simulations were started from the experimental
one. Figure 7 shows the computed and experimental crystal
structures superimposed on each other. Clearly, the two types of
structures are very close to each other. The corresponding
numerical results are presented in Table 1. For comparison,
Sorescu et al.27 computed the RDX crystal density with an error
of 3.8% despite applying an empirical potential fitted to RDX
crystal data (and using a very similar crystal structure
determination procedure to that used in ref 65). As is shown
in Figure 1, the empirical potential agrees very well with the
SAPT(DFT) potential for the nearest neighbor configuration
shown in this figure. Clearly, this is the configuration most
sensitive to experimental data. Other regions of the potential

Figure 6. Steps in first-principles determination of crystal structures.

Figure 7.Comparisons of the computed and experimental structures for the RDX (left panel) and FOX-7 crystals. Reproduced with permission from ref
65, copyright 2008 by American Physical Society, and from ref 71, copyright 2011 by Royal Society of Chemistry.

Accounts of Chemical Research Article

dx.doi.org/10.1021/ar500275m | Acc. Chem. Res. 2014, 47, 3266−32743271



surface are less well represented by the empirical potential,26 which
leads to a larger density error. Taylor et al.71 calculated several
properties of the FOX-7 crystal, in particular the dependence of
volume on pressure, agreeing much better with experiment72 than
with the calculations73 based on empirical potentials fitted to
measurements on FOX-7 and on similar crystals.

5. CRYSTALS WITH FLEXIBLE MONOMERS
First-principle methods have been applied so far only to crystals
with approximately rigid monomers, where rigid-monomer force
fields can be expected to be adequate. The SAPT-based approach
can be extended in its present form to crystals with partly flexible
monomers, that is, to monomers with a few of the internal
coordinates expected to vary significantly without producing
large changes in internal energies compared to lattice energies.
However, the calculations will be more time-consuming than for
rigid monomers since the potential energy surface will depend on
additional coordinates and the number of grid points scales as kD,
with D dimensions and k points per dimension. For any rigid
monomer, D = 6 taking, and since taking k between 3 and 4
seems to be sufficient, this generates on the order of 103 grid
points. With three soft internal degrees of freedom per
monomer, D becomes equal to 12 and one has to use on the
order of 105 grid points, which is still doable but costly.
The difficulties of constructing force fields with flexible

monomers from first principles are often underappreciated
since most empirical force fields, in particular biomolecular ones,
include all degrees of freedom. However, the simplicity of the
latter fields is achieved by assuming intermonomer parameters to
be independent of intramonomer degrees of freedom. Flexible-
monomer potentials of this type can be constructed by adding to
a first-principles rigid-monomer intermolecular potential an
intramonomer potential, both potentials constructed independ-
ently. If the former potential is represented by a sum of atom−
atom interactions, it will change with monomers’ deformations.
Such atom-following representation was found to reproduce only
30% of infrared shifts of intramonomer vibrations in a small
dimer (unpublished result from ref 74). However, such shifts
are purely due to the intermolecular−intramolecular couplings,
so that the performance of this method on other properties may
be more satisfactory.
The atom-following approximation becomes progressively

worse as monomers deform more and more from the reference
configuration. Therefore, one strategy that can be tried is to
develop several rigid-monomer potentials, with monomers’
geometries corresponding to a number of local low-lying minima,
and thenmake each such potential fully flexible by using the atom-
following approach. Of course, for monomers with soft degrees
of freedom, the monomer geometry in a crystal usually (but not
always) will be appreciably distorted compared with any gas-phase
local minima geometries, but hopefully the former geometry will
be close enough to one of the latter to make the atom-following
approach sufficiently reliable.

A radically different approach is to abandon analytic force
fields and calculate potential energies (and possibly forces)
“on the fly”, that is, in each step of a lattice energy minimization
procedure. Such minimizations can usually be performed with
just thousands of steps almost independently of including the
internal degrees of freedom. Thus, finding the minimum in
this way requires a much smaller number of energy calculations
than in the development of a flexible-monomer potential. Still,
such approach would be prohibitively expensive with any ab initio
method including DFT, if used at all stages of the crystal
structure determination procedure. However, it can be used to
optimize a few dozen candidate structures obtained by other
methods, as implemented by Neumann and coauthors.70,75

6. SUMMARY
The results presented herein show that the problems of crystal
structure predictions discussed in refs 1 and 2 have been resolved
and that the main reason for these problems was an insufficient
accuracy of empirical force fields. Currently, several ab initiowave
functions-based methods can be used to compute sufficiently
accurate interaction energies but these methods are too time-
consuming for applications to crystals with monomers
containing more than a dozen or so atoms. In contrast, the
SAPT(DFT) approach, which combines wave function and DFT
methodologies, determines interaction energies equally accu-
rately and can be applied to crystals with monomers containing
about 40 atoms. The first-principles approach has additional
advantages over the empirical approach for notional crystals and
cocrystals since empirical force fields can only be extrapolated to
such cases. Reliable interaction energies can also be computed
using DFT+D methods, in particular dlDF+D.
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